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AFIT-ENC-14-M-02
Abstract

Improvised Explosive Devices continue to be a main weapon used by terrorists. The
Joint IED Defeat Organization defined three main strategies to fight IEDs: attack the
network, defeat the device and equip military forces. This thesis provides models that can
give coalition forces a different perspective on how to fight IEDs.

We begin by first developing a model of the supply chain terrorists use to develop,
emplace and detonate IEDs. Our model contains four states in which IEDs can exist in:
construction (C), emplaced (E), detonated (D) and found by coalition forces (F). We also
have five rate parameters representing the flow rates of IEDs from one state to another.
Over a given period of time, coalition forces can collect data on the number of IEDs
detonated and found. From here, we apply a least squares method to obtain the parameter
set for our supply chain model that best fits the collected data. Minimizing our least
squares equation allows us to estimate where IEDs are located and how fast they are being
moved through the entire supply chain. Using this, we can judge the impact of past efforts.
Currently, the only metric coalition forces have for judging counter-IED efforts are the
number of IEDs detonated and found. By solving our least squares problem, we can
estimate the number of IEDs constructed and emplaced. This offers a more concrete
metric for determining how well coalition forces are attacking the network and defeating
the device and also offers insight on how to continue fighting IEDs.

Our research focuses on two cases for the behavior of the IED supply chain. In the
first case, we assume flow rates are constant. In the second case, we develop a more
complicated model in which the rates that IEDs flow from one state to another vary. This
model attempts to mimic basic strategies in which the rates are affected by actions from
each side. We apply a least squares method on the new parameters to fit our data and to

estimate the behavior of the IED supply chain.
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MODELING CONTINUOUS IED SUPPLY CHAINS

I. Introduction

1.1 Background

Improvised Explosive Devices (IEDs) continue to be a main weapon used by
terrorists against coalition forces overseas. In fact, [IEDs have killed more American
soldiers in Afghanistan than anything else since the war began in 2001 [28]. The fact that
improvised bombs are effective, unpredictable and cheap to develop makes them the
weapon of choice. In the battle against IEDs, coalition forces face a more unpredictable
problem. As a result, IEDs pose a major threat to the safety of our deployed troops.
Furthermore, IED development is becoming more and more sophisticated. Enemy forces
are constantly refining their methods for producing and placing IEDs, using different
materials and changing their tactics as the U.S. develops and indoctrinates countermeasure
strategies. What results is a cat and mouse battle over the overall affect of IEDs.

This section discuss the measures that U.S. forces have developed in order to counter
the production and use of IEDs. We introduce the strategies that policy makers have
identified as the best courses of action to mitigate or eliminate the threat of IEDs. We also
discuss different units and organizations that have been created for the fight against IEDs
as well as how effective they have been in countering IEDs. Lastly, we develop intuition

on how this thesis will help in the fight against IEDs.

1.2 Current Efforts and Policies
To address the pressing threat that IEDs pose, the White House published a report in

February of 2013 titled Countering Improvised Explosive Devices [4]. The report



acknowledged that the terrorists and criminals responsible for these attacks are resilient,
technologically adept and adaptable. They employ the most recent and successful tactics,
techniques and procedures (TTPs) gained from experience in Iraq, Afghanistan and
around the world. The use of IEDs worldwide has increased in recent years, with the
number of attacks exceeding 4,000 in 2011 [4]. Specifically, this report dives into the
policy which the White House believes is the most effective in countering IEDs, noting
that the U.S. must not become complacent to ensure national security. By building upon
existing policy and strategy, the White House looks to implement measures to counter
IEDs by (1) leveraging, integrating and aligning U.S. government efforts, (2) enhancing
focus on protecting American lives and (3) promoting cooperation with governmental,
international and private sector partners. Furthermore, the report goes on to highlight eight
different courses of action which will help put this policy into effect. These courses of
action include increasing engagement, exploiting information and materials from attacks,
advancing intelligence and information analysis, maintaining deployable

Counter-IED (C-IED) resources, screening, detecting and protecting people and resources,
safeguarding explosives and precursor materials, coordinating and standardizing
equipment and training and enhancing operational planning [4]. The policies of this
report underscore the fact that the fight against IEDs continues to be a cat and mouse
game and continues to urge the need for U.S. forces to develop and evolve strategies to
counter IEDs.

1.2.1 JIEDDO.

In 2006, the Deputy Secretary of Defense ordered the creation of the Joint [ED
Defeat Organization (JIEDDO). The main purpose of this organization is to lead, advocate
and coordinate all of the efforts in defeating IEDs for the Department of Defense (DoD)
[29]. Specifically, JIEDDO aims to identify, fund and assess initiatives that provide IED

countermeasure solutions. The organization is primarily supported by the U.S. Army.



Throughout the research led by JIEDDO, the DoD has come to solidify their primary

strategy for battling IEDs. The three areas of focus are: (1) attack the network, (2) defeat

the device itself once emplaced and (3) equip military forces with C-IED techniques [29].
1.2.1.1 Attack the Network.

The first area of focus on defeating IEDs, attack the network, is aimed at performing
offensive operations against the complex network of infrastructure that supports the
production IEDs [14]. Specifically, this focal point was envisioned to improve our forces’
success when attempting to disrupt the enemy’s ability to fund, develop and emplace
IEDs. The main efforts in attacking the network include: C-IED intelligence, weapons
technical intelligence, persistent surveillance, reconnaissance, informations operations,
counter-bomber targeting, IED technical and forensic exploitation and disposal of
unexploded and captured ordnance [14].

It is important to recognize that enemy forces uses extensive local and international
supply chains in order to meet the constant need to create IEDs. Furthermore, these
organizations may use informal money transfers and other localized means to acquire the
materials needed to produce IEDs. Some enemies produce IEDs in the form of homemade
explosives using widely available chemicals while others operate through providers with a
more traditional, operating supply chain. This creates the need for intelligence to trace and
highlight the many links of enemy IED supply chains so that coalition forces can quickly
and effectively interdict suppliers [3].

Since 2007, JIEDDO has delivered over 14,000 intelligence products, trained over
25,000 personnel and deployed over 1,000 personnel in order to support efforts in
attacking the network. JIEDDO further breaks down the first area of focus into three
tactical areas: (1) gain valuable intelligence, (2) build relationships and (3) neutralize the

enemy [14].



To support the efforts in attacking the network, the C-IED Operations Integration
Center (COIC) was established in 2007. COIC’s network includes over 30 intelligence
agencies and other federal agencies that support the effort. COIC provides ease of access
to many databases, giving U.S. forces a vast supply of data and information needed to
attack the network. Since 2007, COIC’s pattern analysis team increased future accident
prediction by 85 percent. COIC also led to the discovery and capture of 497,000 pounds
of explosive material, which equates to over 12,000 IEDs [14]. In 2008, a forensic
exploitation team was deployed to Baghdad to provide enhanced weapons intelligence,
forensic exploitation and information fusion capability. Consequently, it helped end
improvised rocket-assisted mortar attacks [29]. In building strong relationships and
supporting critical organizations, the U.S. and coalition forces can continue to illuminate
IED supply chains and reveal the nature of IED networks.

1.2.1.2 Defeat the Device.

The second area of focus includes initiatives that help detect and disarm IEDs that
have already been emplaced in order to reduce the deadly effects of IED detonations. This
area of focus has led to the implementation of systems that can identify suspicious solids
and liquids as well as vehicle mounted IED detection systems and IED detection robots.
Several programs were developed as a result of the need to defeat IEDs. One such
program includes IED detection kits that can find both metallic and non metallic devices.
Further examples of defeating IEDs include Task Force ODIN (Observe, Detect, Identify
and Neutralize) which was deployed in 2006. The unit used aviation methods in order to
maintain persistent surveillance over areas of high IED risk. This was accomplished using
unmanned aerial vehicles [15].

1.2.1.3 Equip Military Forces.
The last area of focus entails equipping military forces with proper C-IED

techniques. This includes pre-deployment C-IED training which emphasizes the



understanding of current enemy IED capabilities and TTPs. To accomplish this, the Joint
Center of Excellence in Ft. Irwin, Ca began running training programs which emphasized
more realistic simulations. Other training enhancements include the use of small village
complexes, identifying and reporting homemade explosives, improved simulation training,
home station training and the development of C-IED mobile assistance training teams.
Many organizations are in support of this third area of focus. The U.S Marine Corps
Training and Education Command, U.S. Joint Forces Command, U.S. Army Forces
Command and the combat training centers have all contributed to increasing training
standards and raising IED awareness [16].

1.2.1.4 JIEDDO 2012-2016 Strategy Plan.

JIEDDO also released its 2012-2016 strategy in 2012 [13]. Even with dwindling
operations overseas, JIEDDO foresees continuously evolving bomb threats. In fact,
JIEDDO predicts that IEDs will continue to be used by members of the threat continuum.
This threat continuum contains actors such as smugglers, criminals, pirates, drug
traffickers and terrorists. Moreover, JIEDDO has pointed out the spread of IED use to
places such as Thailand and Norway. U.S. reports have also concluded that from January
to November of 2011, a total of 6,832 bombing incidents across 111 nations killed 12,286
people. With this, comes a warning from JIEDDO that IEDs will continue to make their
way onto U.S. soil [13].

The execution of U.S. policies regarding C-IED measures has led to successes
overseas. Reports confirm that in 2012, there was a 46 percent decline in deaths and a 50
percent decline in wounds resulting from IEDs in Afghanistan. The decline was linked to
an increase in surveillance equipment, metal detectors and intensive training. Each of
these supported one of the three areas of focus outlined by JIEDDO. Although the effect

of IEDs on U.S. troops was heavily mitigated, Afghan troops suffered a 124 percent



increase in the number of IED attacks against them. To address this pressing issue, U.S.
advisers have helped train two dozen Afghan units in C-IED measures [5] [28].

1.2.2 Research Objectives.

In the fight against IEDs, JIEDDO has laid out three main focal points for the U.S. to
aim their efforts: attack the network, defeat the IED and equip military personnel. Our
research intends to give U.S. forces a better perspective on fighting IEDs. We begin by
first developing a model of the supply chain enemy forces use to develop, emplace and
detonate IEDs. From here, using the research methods discussed in the methodology
section, we apply a least squares method to estimate where the IEDs are located as well as
how fast they are being moved throughout the supply chain. Using this, we can judge the
impact of our past efforts. Solving a least squares problems provides an estimate for the
number of IEDs constructed and emplaced, information we did not have access to, to start
with. Without this information, coalition forces would have to use the number of IEDs
detonated and found to measure how well they are they are attacking the
network(interdicting IEDs before being emplaced) and defeating the device(interdicting
emplaced IEDs). Using our estimate for IEDs constructed and emplaced, we can judge the
effectiveness of our efforts in attacking the network and defeating the device directly. This

estimate can also provide insight on how to continue to fight IEDs in the future.



II. Literature Review

2.1 Introduction

On top of the research JIEDDO has performed to fight IEDs, there have been
numerous academic research papers published for the same purpose. In this section, we
mention some of the previous work aimed at countering IEDs and how they have
contributed to the battle against IEDs. Furthermore, we also take a look at supply chain
model examples and how they can be used to develop our model for the IED supply chain

Process.

2.2 Previous C-IED Research
2.2.1 Modeling Insurgency, Counter-Insurgency and Coalition Strategies and
Operations .

In 2012, David and Kristin Arney published Modeling Insurgency,
Counter-insurgency, and Coalition Strategies and Operations [7]. In this report, David
and Kristin Arney analyzed insurgency and counter insurgency (COIN) operations using a
large scale system of differential equations to model a dynamically changing coalition
network. Using this model, the two analyzed how leadership, promotion, recruitment,
financial resources, operational techniques, network communications, coalition
cooperation, logistics, security, intelligence, infrastructure development, humanitarian aid,
and psychological warfare affected COIN tactics, operations and strategy. A total of 19
dependent factors, with 19 equations and over 80 parameters were developed for the
model. Using these network models and the system of differential equations, Arney and
Arney then ran an eight-stage test scenario to demonstrate the behavior or their model.
Using this model, the two were able to determine optimal counter-insurgency strategies

[7]. Similar to how Arney and Arney analyzed how certain parameters affected their



insurgency, counter-insurgency model, we wish to analyze how certain parameters will
affect our IED supply chain model. In this thesis, we will also employ the use of systems
of differential equations and parameters to study the behavior of our model. Specifically,
we model the IED supply chain and search our parameter set for which parameter values
best fit collected IED data.

2.2.2 JIEDDO Proposal Selection Model.

In 2009, 1Lt Christina Willy authored a master’s thesis titled Robust Sensitivity
Analysis for the JIEDDO Proposal Selection Model [32]. In this thesis, Willy analyzes
JIEDDQ'’s proposal solicitation process; a tool that allows organizations both military and
civilian to request funding for the development of specific C-IED projects. Willy
employed decision analysis methods to the JIEDDO proposal selection process in order to
help decision makers filter out proposals that did not adequately satisfy C-IED objectives.
Specifically, Willy applied value focused thinking to analyze proposals [32]. Using this
technique, Willy evaluates JIEDDQO'’s pre-developed proposal value model to determine
whether or not the value model accurately reflected JIEDDQO’s decision process. Willy’s
research methods were aimed at gauging the efficacy of C-IED projects before being
implemented in order to determine which projects to select. In this thesis, we wish to
provide intuition on how effective certain projects are after being implemented. After
applying our least squares method, we will obtain an estimate for the behavior of the
entire supply chain. With this knowledge, we can gauge how effective our past C-IED
efforts were by looking at its effect on our IED supply chain at past times.

2.2.3 Agent Based Simulation.

Other works involved with C-IED includes Dr. Anthony Dekker’s Agent-Based
Simulation for Counter-IED: A Simulation Science Survey [10]. This paper uses
agent-based simulations to model the human networks that place IEDs. Dekker

categorizes two main human aspects of IED placement. The first is motivation which



affects the number of IEDs placed per day and the second is cognition which affects the
choice of location for IEDs. Dekker goes on to label counter-insurgency forces as blue
forces and insurgency forces as red forces. He advocates simulations in which he models
motivation as being affected by attitudes and emotions within society and models
cognition as being affected by learning and adapting to opposing forces’ responses.
Dekker terms the co-evolutionary aspect of COIN operations: blue actions alter how red
forces conduct operations and vice versa [10]. He then goes on to mention that these
simulations can be used to explore this adaptive behavior. Dekker’s research aims to create
a model of how IED placement strategies are affected by the actions of other players. In
this thesis, we will model our IED flow rate parameters to also be affected by the actions
of other players. In our nonlinear model (see Section 3.1.3), we will set up a model where
the flow of IEDs from one state to another is affected by both coalition and enemy actions.

2.2.4 Optimization, Games and Adaption.

Dekker also published Optimization, Games, Adaptation: Three Perspectives on
Operations Research for Counter-IED [11]. In this paper, Dekker examines optimization
approaches for C-IED actions. Dekker also analyzes game theoretic approaches where
both blue and red forces can adapt to each others’ actions. In terms of optimization,
Dekker looks at which blue (C-IED) strategy ensures the best chance of survival when
having to traverse a simulated terrain grid. This approach assumes a fixed red strategy. He
then determines optimal strategies for both sides. Dekker then goes even further to
incorporate adaptivity, in which enemies can devise counter counter-IED strategies. He

concludes that the most rapidly adapting side has the advantage [11].

2.3 IED Supply Chain Models
JIEDDO'’s first area of focus in their C-IED policy stresses the need for the U.S. to
attack the networks used by enemy forces. In order to better understand how enemy forces

are employing IEDs, we must first model the process of producing and emplacing IEDs



through a supply chain perspective. By modeling the process in which enemy forces
obtain material and construct, emplace and detonate IEDs, we can study the behavior of
IED threats as we aim to implement C-IED strategies. Specifically, we will represent the
lifespan of an IED using a supply chain model.

Although enemy forces may have non-traditional avenues for obtaining materials
needed to rapidly construct IEDs, the general supply chain process for IEDs remain
similar to those of traditional products. The traditional supply chain is pictured in Figure
2.1 taken from Beamon’s Supply Chain Design and Analysis: Models and Methods [8].
For the case of IEDs, there are both traditional and non-traditional suppliers for materials,
represented by a single supplier entity in the figure below. Manufacturing facilities may be
paralleled by factories where enemies construct IEDs or even homes where homemade
IEDs are built. Further in the process, IEDs may be stored or transported straight to the

battlefield where they are then emplaced and left to detonate.

Suppliers « Distribution Center
A /// v
Manufacturing Storage ,| Transport |~~~ -
Facility " Facility " Vehicle | ¥ Retaller
Production Planning Distribution and Logistics

and Inventory Control

Figure 2.1: Supply Chain Diagram
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Currently, there are published reports that demonstrate supply chain models directly
applied to IED life spans. Specifically, Modeling Behavioral Activities Related to
Deploying IEDs in Irag by Weiss, Whitaker, Briscoe and Trewhitt presents a model which
takes into account an IED disruption model, materials and supplies gathering model and

an IED motivation model [9]. The collective model is depicted in Figure 2.2 below.

Materials and Supplies
Gathering Submodel X
Materials and

-.‘ Supplies
- O I ®
Gathering ,/" Consumption
e P 1ED Disruption Submodel
/ .‘II
. s / T~ - Disrupted IEDs
— —~
// / !
/ ! Early Disruption { _ i
I / Middle Disruption Late Disruption
|
|
\
: ﬂ. Storage Emplacement Detanation

@ Cnnstructcd IEDs 1ED Tnvcntow 76@ Emplaced 1EDs g@ Detonated IEDs
) \ q
Radicalization

Construction == _ Vi
IED Motivation Submoﬁc{{" /
@ L Q Active Ifjsurgents @
Deradicalization . .
A \ Death \
.

General Population Grey Population
A
Y

Recruitment

_.‘/ @I{lsengdgement \
/ / \ -.‘

D Radicalization Submodel D Deradicalization Sub 1 O Di g Submodel D Recruitment Submodel O Death Submodel

Figure 2.2: Diagram of IED Core Model

Looking at just the IED disruption submodel, we have a supply chain model that
illustrates the life cycle of IEDs as they go from being constructed to being detonated.
This model introduces five states in which IEDs can exist: construction, inventory storage,
emplaced, detonated and disrupted. According to the submodel, U.S. forces can disrupt
the detonation of IEDs in three spots: early disruption which corresponds to seizing IEDs

while they are being constructed, middle disruption which corresponds to seizing IEDs

11



when they are in storage and late disruption which corresponds to neutralizing emplaced
IEDs [9].

Weiss, Whitaker, Briscoe and Trewhitt go on to use their models for what-if analysis.
Using these techniques they illustrate the factors and influences that are more significant
than others. An example they present is using the model to determine the effects of
various deterrents on the overall rate of IED detonation. The factors that were considered
in this case were insurgent disengagement effectiveness, IED disruption effectiveness and
supply gathering interference. From here, studies then determined that disengagement
yielded the largest long-term (36 months) reduction in overall IED detonations while
increase in supply interference yielded the smallest [9]. The models that Weiss, Whitaker,
Broscoe and Trewhitt used in their technical report regarding IEDs in Iraq is used to

formulate our own IED supply chain model which is discussed in the next section.
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III. Methodology

3.1 Modeling the Supply Chain

3.1.1 Mathematical Model Background.

Using the work of Weiss, Whitaker, Broscoe and Trewhitt [9], we develop our own
supply chain model for IED production. We focus on only the IED disruption submodel
from Figure 2.2, using four stages to model the IED supply chain: construction, emplaced,
detonated and found. We also incorporate disruption possibilities similar to the IED
disruption submodel. In our model, we include two opportunities for disruption, one
during the transition from construction to being emplaced and one from being emplaced to

detonation. Our IED supply chain model is depicted in Figure 3.1 below.

A 04 o

B B,

Figure 3.1: IED Supply Chain Model

In our IED model above, the boxes represent the four states of the IED lifespan: C
for construction, E for emplaced, D for detonated and F for found. The arrows represent
transitions while @; and §3; represent the transition rates. We see that a; and a, correspond

to the rate at which our enemies are transporting IEDs from the construction state to the
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emplaced state and to the rate at which emplaced IEDs are being detonated, respectively.
Also, @, corresponds to the rate at which IED constructors are receiving materials to
produce IEDs. Lastly, ; and 3, represent the rates in which we disrupt IEDs from the
constructed and emplaced states, respectively.

It is important to note one key difference between our supply chain model and the
one used by Weiss, Whitaker, Broscoe and Trewhitt [9]. Instead of using five states, we
merge the inventory storage state into the construction state to create a more compact four
state model. Similarly, we combine early and middle disruption of the IED disruption
submodel into one disruption rate 5;. The reason we chose to make these simplifications
is to adhere to JIEDDO’s three main focal points in battling IEDs. We see that the first
focal point which aims to disrupt the enemy’s ability to fund, develop and emplace IEDs
corresponds to both early and middle disruption while the second focal point, which aims
to disarm IEDs that have already been emplaced corresponds to late disruption.

Using this supply chain model to depict how enemies produce, emplace and detonate
IEDs we then develop a mathematical model. In developing this model for the IED
lifespan, we aim to mimic existing models that have been used to represent behavior
similar to that of the IED supply chain. One such model is the Susceptible, Infected and
Removed (SIRS) model used in epidemiology [30].

The SIRS model is an important part of mathematical biology. It is an important tool
used for gauging the impact of different vaccination programs on the control and
eradication of certain diseases. In this model, there exist three states, each representing a
portion of the population. The susceptible group contains those who can receive the virus
from the members of the infected group. The last group is the removed group which
represent those who have recovered from the disease. They are then free of the infection
but rejoin susceptible group in the SIRS model. Figure 3.2 below illustrates the SIRS

model [30].
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Figure 3.2: SIRS Model

In this model, we see that 5 represents the rate at which susceptible victims become
infected, v represents the rate at which infected members become removed and y
represents the rate at which removed members rejoin the susceptible population.
Mathematically modelling this dynamic process, we get the following equations for the

population.

S =-BSI+yR (3.1)
I=BSI-vI (3.2)
R =vI-vyR 3.3)

The SIRS model is widely used in mathematical biology and provides us a way to
mathematically model our IED supply chain. Both the SIRS model and our IED supply
chain model possess similar behavior; there exists states which individuals can exist in
and there exists flow rates in which individuals move from one state to another. Thus, it is
reasonable to model our supply chain to be similar to the SIRS model. More information

about the SIRS model can be found in [30].
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Similarly, we derive equations to model the dynamic process of our IED supply chain
model. For this thesis, we consider two cases. In the first case, we assume that our rates, «;

and ;, are constant parameters. In a later section we will introduce time dependent rates.

3.1.2 Formulating the Linear Model.

Q o 5]

B B,

Figure 3.3: IED Supply Chain Model

Assuming constant rates and applying the same methods used to derive the SIRS
model’s differential equations, we derive the following system of equations for our IED

model:

C = ay— (@ +B1)C (3.4)
E=aC—(a+B)E (3.5)
D = aE (3.6)
F=BC+pRE (3.7)

Here it is important to consider the units in this system. Since C, E, D and F represent our

states, they must have units of IEDs, thus C, E, D and F have units of 222 o also has

units of 223 "while ay, @,, B1, B> (and B, v, v from the SIRS model) have units of -

time*
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Physically, this means that @, represents a flow rate: the number of IEDs flowing into the
construction phase over time while the other four parameters represent frequency. That is,
a) represents the amount of IEDs in the construction state that flow to the emplaced state
over a given time period. a», 81 and 8, behave similarly, thus we see that o has different
units compared to the rest of the rate parameters

We now have a system of four equations for our IED model. If @; and §3; are constants
these equations are all linear and have constant coefficients, allowing us to solve C(?),
D(t), E(t) and F(¢) explicitly. Solving each of these differential equations, we get the

following solutions:

Ct) = 22 4 ke (3.8)
r
k —-rit
E@t) = “0“1)_ GRE | e (3.9)
ryr r—n
k —rit k —rt
D(t) = “2“0“‘) Bifie @ T (3.10)
ryr ri(r —r) r
[ k —rit k —rit k —rat
F(t) = Biag + (ﬁz(loal)]t_ﬁl 1€ +,32CY1 1€ _ﬂz 2€ + ks (.11)
A ryr r ri(ry —r) rn

Where k; are integration constants that are solved for by imposing initial conditions and
ri=a;+f;. In this thesis, we consider k; parameters as well. We do not know how many
IEDs are in C and D at time ¢ = 0, thus k; and k, will need to be estimated using our least
squares problem. Although we do know how many IEDs are detonated and found at time
t = 0, we still allow them to be free parameters. Doing so allows us to better fit data in the

least squares problem defined in section 3.2.2. Solving for initial conditions, we then get
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the following equations:

C(0) = % + ki (3.12)
1
k
E(0) = (0‘0“‘)— il (3.13)
ryr ry —n
Doy = ek _wh (3.14)
ry(ry —r) )
F(0) = _Bik N Brarki Bk ik (3.15)
r ri(ry —ry) r

3.1.3 Formulating the Nonlinear Model.

We now formulate the supply chain model which mimics a basic strategy in which
both coalition forces and insurgents adapt. We can model this situation by assuming our
flow rates are functions of C(¢), D(¢), E(t) and F(¢). Let us consider each of the new flow
rates, denoted by a tilde.

3.1.3.1 Emplaced to Detonated: @,.

In our IED supply chain model, @, physically represents the rate at which emplaced
IEDs detonate. For our IED model, we assume the rate at which IEDs detonate is
independent of coalition or enemy forces’ actions. That is, we assume that neither
coalition forces nor insurgents have the power to influence the amount of emplaced IEDs
that detonate and that this rate is independent of both sides’ actions. Thus, in this case, we
keep d,=a, as constant.

3.1.3.2 Found from Construction: 3.

[ represents the rate at which coalition forces find IEDs in the construction state. In
a basic strategy, we expect that the more IEDs that detonate, the more U.S. forces will
focus on finding IEDs in construction. That is, 5; must be directly influenced by the rate at
which D grows, D = a, E. Thus, we suggest the rate model:

Bi =i+ yimE
where f3; is a constant that represents a minimum flow rate in case D = 0 and vy, is also a

constant representing the influence of D on the coalition force’s strategy.
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3.1.3.3 Found from Emplaced: .
We assume ,8~2 to have similar dependence as B~1. That is, if more IEDs are detonating,
coalition forces will look to find more emplaced IEDs. Thus, we suggest the rate model:
B2 =B+ y2rE
where 3, is a constant that represents a minimum flow rate in case D = 0 and 1y, is also a
constant representing the influence of D on the coalition force’s strategy. We see that y;
and 7y, essentially represents how coalition forces decide to divide their efforts between
attacking the network and defeating the device as a result of IED detonations.
3.1.3.4 Construction to Emplaced: &,.

We assume that the enemy force’s basic strategy will be to emplace more IEDs if
more are detonating and/or are being found after being emplaced, represented by D = a»E
and B,E = (B, + v,a» E)E respectively. Thus, we suggest the rate model:

a1 = ay +y3(Br + 20 E + ay )E
where a; i1s a constant that represents a minimum flow rate and 3 is also a constant
representing the influence of found and detonated IEDs on the insurgent force’s strategy.
3.1.3.5 Raw Material to Construction: .

We wish to impose a limit for @ as a function of C(¢). That is, as C(¢) reaches some
critical capacity, C*, @, must approach 0 and when C(¢) approaches 0, &, must approach a
maximum flow rate. Physically, this represents the speeding up and slowing down of
inflow of resources as the number of IEDs in construction reaches 0 and its maximum
capacity, respectively. Thus, we suggest the rate model:

do=(1 — &)ayg
where « is the maximum flow rate. We see this formula for @, meets our criteria outlined

above.
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We note that this is not the only function that can satisfy our criteria. We impose:
ao = f(C",Cao
f(c,CcH=0

f0,C") =1

This can be acheived by other functions, for example:

fe.cy=(1- Cﬁ)p peR

For our model, we choose p = 1.

Now, we see our IED supply chain is modeled by the system of differential equations
in 3.16-3.19. Furthermore, we notice that our nonlinear model contains our linear model.
That is, if we let C* approach infinity and set y; = y, = y3 = 0, we have our linear model,
however, our nonlinear case includes an extra four degrees of freedom in C*, vy, v, and 3.
Thus, the goal is to apply least squares methods on the nonlinear case to attempt to

improve our results from the linear case.

C=(1- %)OZO — (a1 +y3(B2 + 200E + a)E + B1 + y1anE)C (3.16)
E = (a1 +y3(B: + Y202E + 0)E)C — (a3 + B2 + Y20, E)E (3.17)
D =oE (3.18)
F = (B +y1%E)C + (B, + Y2 E)E (3.19)
< C(0), E(0),D(0), F(0) > = < Cy, Ey, Dy, Fy > (3.20)

3.1.4 Proving Uniqueness of the Solution to the Nonlinear Case.
Before solving our system of differential equations for the nonlinear case, we must
first prove that the solution is unique. To do this, we first introduce preliminary definitions

and lemmas.
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Definition 3.1. A vector function f(x) is a Lipschitz continuous function in x if there

exists a constant m, the Lipschitz constant, such that

I1f(x) = fFDIl < mllx - yll

Lemma 3.2. If f(x) has bounded first-partial derivatives in each of x;,x,,...,x,, then f(x)

is a Lipschitz continuous function [31].

Lemma 3.3. Suppose f(x) is Lipschitz continuous for all x, y in some interval
[x9 — 9, x9 + 0]. Then a unique solution x(¢) of
x'(1) = f(x)
x(f) = xo

exists for all t in some interval t € (ty — €, 1o + €) [1].

We assume that a;, 8; and y; are finite and that C* > 1, These assumptions stem from
our physical representation of the IED supply chain since we do not investigate infinite
supply chains or supply chains with construction capacity less than one IED. We also see

that «;, B;, vi, C(t), E(t), D(t), F(t) > 0

Theorem 3.4. Assuming «;, B; and vy; are finite and that C* > 1, then the solution to the

system of nonlinear differential equations (3.16-3.20) is unique.

Proof. We see that our system of differential equations can be written in the form

x'(1) = f(x)
x(tp) = xo
where
C@t)
E()
x(t) =
D(1t)
F(1)
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and x is a vector with our initial data for C(r), E(¢), D(t) and F(¢) as elements. In this
case, f(x) is a vector function with the right hand sides of equations (3.16 — 3.19) as

entries. We now calculate the first partial derivatives of f(x):

—% - (al +’)/3(ﬂ2 +’}/20’2E + Q’Q)E +ﬁ1 +’)/1C1’2E)

of a1 + Y382 + 2E + a)E
oC 0
Bi+yiaE

—’)/3ﬁ2C - 2’)’2’)/3CZ2CE - )/3C}!2C + ’)/la’zc

af ’}/3ﬁ2C + 2’)’273&2CE + ’)/3C¥2C — Q) —ﬁg - 2’)’2&2E

OE @

Y1a2C + B + 2y,a0E

of _

=0
oD
of
2F =0

Since each equation in our system is continuous with respect to C(¢) and E(f) we see
that C(¢) and E(¢) are bounded over a finite time interval. Let C(1) < C, E(t) < E, || < &,
1Bil < B,-, lyil < ¥; be the bounds. Then we have:

| = & — (a1 + 7382 + 122 E + m)E + B + y1, E]

<o+ (@ + 9352 + b + G)E + b1+ §1G:E)
lar +¥3(B2 + Y202E + o) E]

< &)+ 9382 + ot + )E
181 + y1a2E]

<P+ NdE

| = ¥3B82C = 2v,y30,CE — y30,C + y1a,C]|
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< 93B:C + 292936:CE + 932C + $16,C
[73B82C + 2y2y302CE + y302C — a2 — B2 — 2241 E|
< 935:.C + 29:930,CE + 9302C + &y + o + 250t E
|as|
<&
y122C + B2 + 27201 E|
<9&:C + B + 298, F
We then consider the infinity-norm: ||Al|,, = miax( ﬁ]l la; j) Thus, with our assumptions on
a;, Bi, vi and C* and applying Lemma 3.2 and Lerzl_rna 3.3, we have that our solution is in

fact unique. Here we note the importance of assuming that C* > 1 as it bounds C* away

from 0, thus preventing z& from becoming unbounded.

For more information regarding the existence and uniqueness of solutions to
nonlinear differential equations, refer to [31].

3.1.5 Solving the System of Differential Equations.

In order to solve for C(t), E(t), D(t) and F(t), governed by the system of differential
equations in 3.16-3.20, we must employ the use of a numerical differential equations
solver. One such solver is MATLAB’s ODE45 [25]. Solutions of this numerical solver
are obtained using the Runge-Kutta(4,5) method explained in the sections below.

3.1.5.1 Runge-Kutta Methods.

The goal of a Runka-Kutta method is to seek solutions, x(t), of

x'(t) = f(t,x) (3.21)

x(t9) = xo a<t<b (3.22)
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on an interval a < t < b, where f is a given vector valued function of n + 1 variables and
X is a given n-dimensional vector. The Runka-Kutta(4,5) method is an explicit single step

method.

Definition 3.5. An explicit single step method for numerical solutions of 3.21-3.22 is a

method of the form

xo = x(to)

Xi+1 =xk+h¢(tk,xk,h) 0<k<N-1

where ¢ is a given function, 4 is the time step used to discretize our time interval [a, b] and
N + 1 is the number of time points in our discretization. This method allows us to obtain

the solution at discretized time points, X¢, X1,...Xy.

Definition 3.6. In general, Runge Kutta methods are of the following form

xo = x(f)

Xie1 = Xi + hp(ty, Xi, h) 0<k<N-1
where

R
Pt xi,h) = ) oK,
r=1
Kl = f(l’ x)

r—1

K, = f(t+ahx+h Z b,.K,)
s=1

r

a, = b, r=2,3,...R

-1
=1

s

Specifically, a method of this form is called an R-stage Runge Kutta method.

Example 3.7. Runge Kutta 4th Order
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One well known Runge-Kutta scheme is the 4-th order Runge-Kutta scheme (RK4),
where the order refers to the truncation error (in this case O(4*)). The RK4 method takes

the form:

Xo = x(fp)
h
Xi+1 = X + E[Kl + 2K2 + 2K3 + K4]
Ky = f(te, y1)
h h
K, = f(tp + =,y + =K
2= fi 7Ykt 5 )
h h
K= f(ty + =,y + =K
3= f(t 7t 2)

K4 = f(tk + l’l, Vi + l’lK3)

h
(b, xp, h) = E[Kl + 2K, + 2K3 + K4

In this case, we have

ric | ar| bn|ba|bs
1 tlo |- |- |-
21211113 10 0O
3120110 |1 o
4 é 1 {0 |0 1

Table 3.1: RK4 Coefficients

For readability, Runge-Kutta coefficients are arranged in what is called a Butcher

Tableau of the form:
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a | by

as | by by

ag | by bry - bR,R—l

(6] (&) st Cp-1 Cr

Table 3.2: Generic Butcher Tableau

For RK4, we then have the following Butcher Tableau:

0

[

2| 2

1 1

310 3

110 0 1
1 2 2 1
§ & 5 &

Table 3.3: RK4 Butcher Tableau

For more information regarding numerical differential equations solvers, refer to [6].

3.1.5.2 Dormand-Prince Method.

Given a problem in the form of equations (3.21-3.22), MATLAB’s ODE45 uses the
Runka-Kutta(4,5) method, also known as the Dormand-Prince method, to obtain a
solution. The Dormand-Prince method produces a fifth order solution while using a
fourth-order estimate of the error [25]. In this section, we discuss the Dormand-Prince

method and how it uses an adaptive step size technique in order to achieve specified error
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tolerances. We wish to use this built in package since it will allow for easy replication and

application for future problems based on the research in this thesis. Moreover, ODE45 is

faster and more accurate than other built in solvers [25].

The Dormand-Prince Method can be summarized with the Butcher Tableau in Table

3.4. The first row of ¢ coeflicients give the fifth-order solution and the second row gives

the fourth-order solution.

0
1 1
5 |53
3| 3 9
0 | 20 0
4 44 =56 32
5 | % 15 9
8 | 19372 -25360 64448  —212
9 | 6561 2187 6561 729
|| w7 s gemm 49 s
3168 33 5247 176 18656
113 0 500 125 2187 11
334 1113 192 6784 84
5179 7571 393 —92097 187 1 :
600 U 16695 a0 w20 316 g0 Tifth Order
35 s00 125 2187 11
% O o5 19 e s O Fourth Order

Table 3.4: Dormand-Prince Butcher Tableau

Thus we see that the fifth-order solution can be obtained by iterating using the

following equation:

5179

7571

K,

¥in = h(57e00

" 16695 2 T 640

393

92097

187 1

4

339200

K5+ 2100K6+ —K7)

40

and that the fourth-order solution can be obtained by iterating using the following

equation:

35
Xiyl = h(ﬁKl +

500
1113

K3

125
+ RS
192
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We can then approximate the local truncation error as ||% ;.1 — xj.1/|. The procedure

for implementing an adaptive step size technique is summarized in the steps below.
1. h given as initial step size, € given as error tolerance
2.t =tj+h
3. Calculate X, and x

4. If [|X 51 — X ;41| < €h, iterate using current step size A. In this case, we see that the
approximated local error meets our error tolerance, hence we iterate without

changing step size.

€h

1/4 In thi . li
m) . In this case, ¢q 18 a scaling

5. If criteria in step 4 is not met, let g = (

factor. We wish to determine gh that will meet our error tolerance. Specifically, gh

must satisfy € > W That is, we need
151 =%l _ AN 1 414 ¢ . - _ 5
€> % = 0((gh)*) = kq"h" = |IX ;11 — x 41|l since ||X 41 — xj44]| = O(R).
H de> 2| finally givi @)
ence, we need € > “-||¥;,1 — x;44||, finally giving us, g < (m)
. 1/4
Furthermore, we incorporate a “safety” factor of 1 to get ¢ = (L)
2 2||% jp1 =% j1]l

o
°

Ifg<0.1,leth=.lh

If.l<g<4leth=qh

Ifg >4, leth=4h

If h > hyay, let h = hygy, Where hy,,, is the maximum allowed step size

7. Tterate until desired time is achieved

The criteria in step 6 may be altered as desired. More information on adaptive time step
methods can be found in [6] [17].
MATLAB’s ODE45 can use the Dormand-Prince method and output solutions at

given time steps. In our nonlinear model, we use integer values for our time discretization
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to represent the period of time between the data points we gather (days, weeks, months).

Thus, we use MATLAB’s ODE45 to provide solutions to our problem:

x'(t) = f(t, %)

x(t) = xg a<t<b

where f (¢, x) is defined by equations (3.16 — 3.20), x, are the initial values of C(¢), E(¢),
D(t) and F(¢) and [a, b] is the time period which we solve our problem for.

3.1.6 Convergence of ODE45.

We now wish to determine why we believe the answers obtained using numerical

differential equations solvers. To do this, we investigate the convergence of solutions

provided by ODEA4S5.

Definition 3.8. A method is convergent if the error, ||Ey|| — 0 as 7 — 0 for any initial
data yj. In this case, ||[Ey|| = || — y"||, where y" is the solution obtained by the numerical
differential equation solver at the final time 7 = Nh and where 7" is the exact solution at

final time T'.

Since y” is the solution obtained by our solver, we see that by the definition of
truncation error, 7, we have )7”” = H(") + hty,, where H is our scheme (such as RK4
defined in Example 3.7). In the case of ODE45 where we have adaptive time steps, we
have ! = HG") + h,Th,, where h, is the timestep taken at the n-th iteration and 7, is

the corresponding truncation error with the given timestep (since ODE45 solutions are

fifth order accurate, 7,,=0(h>)). Thus we have:

IEN = 115" = YVl
= |HG"™") = HO"™") + hy_1 vl

< NHG™") = HOV I+ lhy-1Thn-1ll
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Applying the multivariate mean value theorem,

HGE ™ = HOV ) + JEYEHEY =)V

where J(H)(£&V7!) is the Jacobian of H evaluated at £Y~! which lies between 7'~ and y¥~!.

Denote oy_; = ||[J(H)(EV™")||. We then have :

IEN < IVEDEHEY = YOI+ llhv-1tin-1ll
< oy il = YVIOI + Ao Tl
< on-llEn-1ll + lan-1Thn-1l]

~N-2 _N-2
< on-10N22|I(F = V'O + on-illhy-atiy=all + 1An-1Thn-1ll

0 0
< oN-1ON=2..00l|(F" = YOIl + on—10N=2...o1lhoThpll + ... + O n=illan-aThn-2ll + 1an—1Thn-1ll
At our initial time, ° = y°, thus we have:

IEN]] < on-10N=2...O1llhoTholl + ... + On=1lliy-aTan=2ll + lAn-1Thn-1]l

N-1(( J
<) [[l_[ (TN—q] lth—.,-—mN-j-lll] + s tanel

=1 \\g=1

Here, we see that 7;,,, represents how consistent our calculations are at the n-th iteration
while the o, terms, are the growth factors of the error at the n-th iteration. This represents
the stability of our solution.

We now take a look at o, obtained from our system of differential equations and
ODEA45. Since, we have four equations in our system of differential equations, we will
compute four sets of sigma values, 0',(1’"), form=1,2,3,4andn = 1...N — 1. Using
standard linear stability analysis (see [6]), we can obtain Uf{" ) if we have the eigenvalues
of the Jacobian of f(x) evaluated at y", where f(x) is the right hand side of our system of
differential equations and if we have our time steps taken at iteration n. For example,
using RK4, o is computed with:

oW = LB (20 (L + B A + 200 (L B (L 4+ B2 ) + A7 (L4 Ry (L4 B2 (1 + B2 )

30



where A7 is the m-th eigenvalue of the Jacobian of f(x) evaluated at y" and £, is the time
step takin at the n — A iteration. The o values for ODE45 are calculated similarly, using
the Butcher tableau for the Dormand-Prince method [17], in place of the RK4 Butcher
Tableau.

Running ODEA4S5 to solve the problem given in equations (3.16-3.20) with a random
set of parameters and initial values, we obtain the following o values in Figure 3.4. We
do not observe O'fs) and 0',(;,‘). Given the nature of our system of differential equations,

B =2=0forn=1,..,N - 1. Hence ¢’ = ¢’ = 1 which is on the boundary of our

stability region for Runge-Kutta schemes.

Progression of Sigma
18 T T T T T T

14F 1

= 1F _
[
= 3
OBy + -
to.
o
M
* :
D2 =

0y -

1 1 1 1
o 200 400 B00 ao0 1000 1200 1400
n

Figure 3.4: Sigma Values for ODE45 Run. We plot the two o, values for each time step

taken. Here ODEA45 outputs the solution for roughly N = 1400 time points. In this case, the

first set of sigma values are greater than 1 or remain close to 1. For a convergent method,
(1

we wish to observe growth rates, o, less than 1. We see that our o, values may lead our

inequality constraint to not meet convergence criteria.
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Calculating the sum product, we have:
IEn]| < 1.2¢10

IEn| < 5.3e - 10

for the solutions of the first and second equations in our system, respectively. Clearly, this
calculation does not give us adequate error bounds for the solutions to our first equation.
We must observe convergence indirectly. To resolve this matter, we perform the following

steps:

1. Solve the problem implementing our own code (running RK4)

2. Calculate the sum product inequality for our implementation of RK4 and observe

adequate inequality constraints for the RK4 solutions

3. Compare the solutions from our implementation of RK4 to the results of ODE45

Implementing an RK4 solver with a fixed time step h=5e-5, we obtain the following

inequality constraint:

NENI < IJCEDEHE =YV DI + [Tl
< 0'N—1||()~’N_1 - )’N_l)” + ||hTs|
< oy-illEn-1ll + [[ATsl|

“N-2 _  N-2
< on-10N-2llF77 = YOl + on-allhTall + (1Tl

S0 _ 0
< ON-10N-2-..00|(F" = Y + On-10 N2 o1 [|ATH]| + o + Oy llATH]] + ATl
At our initial time, 7 = y°, thus we have:

IENI| € on-10n-2...oillhTall + ... + on-illATsll + ||l

< ((Nz‘: ﬁaN_q) ' 1]||hrh||

J=1 g=1
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Supposing our method is consistent with 7, = O(h”), then we have convergence if

N-1
((Z H ) )so(h‘(”“))
J=1 ¢=1

Calculating the sum product term for the RK4 implementation (p = 4), we obtain:

(( i H 0'5\],),1) ) 9.6¢14 = O(hs) < o(h~+D)

N-1 j
(( 2 11 0'53) )+ 1) = 1.0¢3 = O(N) = O(3) < o(h™#*D)

Thus, our implementation of RK4 satisfies the convergence criteria. Moreover, in this

case, we get the following inequality constraints:
IEn| < 3.0e =7

IEn]| < 3.2¢e - 19

Thus, our solutions at final time T are sufficiently close to the exact solutions.

We must now compare the results of our two solvers. To do this, we take the
difference of solutions from the two solvers using decreasing time steps for the RK4
implementation. To observe convergence, our RK4 solution must converge to the ODE45
solution as we decrease the timestep used for our RK4 implementation. Figure 3.5
illustrates the change in the difference between our two solutions, denoted

E(h) = 1y} ppas(h) — yara(MIl, as we decrease our timestep for RK4.
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Figure 3.5: Difference Between RK4 and ODE45 Solutions as a Function of Time Step.
Here, we plot the log(E(h)) over the log(h) along with a line of slope= —4. We observe
that as we decrease & for our implementation of RK4, the solution converges to the solution
from ODEA45. The loglog plot demonstrates that the RK4 solution converges at slope of —4

which is explained by the fact that RK4 is consistent on the order of O(k*).

Thus, we observe that our solutions from RK4 converges to the ODE45 solution at the rate
of O(k*). Hence, the solutions to equations (316-3.20) using ODE45 are in fact
convergent.

This section illustrated the criteria necessary to test convergence of our numerical
schemes. We implemented our own RK4 scheme, observed convergence and then showed
it converges to the ODE45 solution, thus showing that ODE45 is convergent. For more

information on the convergence of numerical methods, refer to [6].
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3.2 Data Fitting and Least Squares

Now that we have developed and solved the models that illustrates the behavior of
the IED lifespan, we aim to employ the model to learn where IEDs are, at a given time and
how fast they are moving. To do this, we will fit our model to data gathered from the
battlefield.

From the battlefield, we can obtain sample points for both the number of IEDs that
have detonated, D, and the number of IEDs that we find, F, at given times, however, we
do not know how many IEDs are being constructed or emplaced. We also do not know the
rates at which enemy forces are moving IEDs. Solving the least squares problem gives us
an estimate on the entire supply chain. Suppose we cumulatively track the number of
IEDs that detonate and the number of IEDs that are found at a given location for a certain
period. Then, we see that D(¢) and F(¢) are monotonically increasing functions of time
and our goal is to apply a least squares method on our data points to obtain the best
approximation of our parameters. To do this, we use nonlinear least squares data fitting.

3.2.1 Nonlinear Least Squares Example.

A nonlinear least squares problem is a minimization problem of the form

min f(x) = 4| D fitx)?
i=1

where the objective function f(x) is defined in terms of f;. This method is called least
squares due to the fact that we minimize the sum of squares of these functions [12]. In
our least squares problem, x will be represented by our parameter space.

One example of the application of the method of least squares can be seen when
using data points to estimate parameters in mathematical biology. For example, suppose
we collected data points (#;, y;) for i = 1...n which represented the size of a population of

antelope at various times. Suppose we have the data in Table 3.5.

35



yi|3|4|6|11]20

Table 3.5: Antelope Population Data

where times are measured in years and population in hundreds. From population

modeling, we approximate the population as an exponential model

yi & xe

where our parameters are x; and x,. This model is illustrated in the figure below [12].

20} #
18}
16
14}
12}

10

Bl ..--"'FJ X
ar %
I
2 -
D 1 1 1 1 1 1 1 1 1 ]
0 1 2 3 4 5 & 7 8 3 10

Figure 3.6: Antelope Population Model

Now using the least squares method, we set up the problem as

5
mini;nize f(x1,x) = J Z((Jﬁem) - yi)?
i=1
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After solving for our optimal parameters x; and x, we report our error. In this case
we see that at each data point we have

yi=x1e?" + €

Error = i(ei)z
Vi=1

For more information regarding nonlinear least squares, refer to [12].

The error is then reported as

3.2.2 Applying Nonlinear Least Squares.
Now, we can apply the least squares method to our IED model. If we sampled the

number of IEDs destructed and found at n + 1 time points, we have the following data set:

° d;

o f fori=0,1,..n

where d; and f; represents the cumulative number of IEDs detonated and found,
respectively at time i.

In our case, we must apply a least squares method to obtain the best parameters for
the IED supply chain model. Applying the least squares method, we have the following

objective function

m@)= Sl = 1.7~ &) + (F(t = i.0) - f)7]
where o is a vector consisting of our parameters. In the linear case,
o =< ky, ko, k3, kg, a9, a1, @2, 81, 8> > and in the nonlinear case, we have
o =< C",ay, a1, a2,B1,62,Y1,Y2, Y3, C(0), E(0), D(0), F(0) >. Thus we have a
nine-dimensional and a thirteen-dimensional least squares problem.

After solving for o we then have all the data needed in order to solve for C(t), D(¢),

E(t) and F(¢) for all time, thus obtaining an estimate for the entire supply chain behavior.
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3.3 Local Optimization

In order to solve the least squares problem we defined in the section above, we must
find a way to minimize our objective function, m(c), over possible parameter values. To
solve this minimization problem, we employ MATLAB’s 1sqnonlin tool [23]. To use

1sgnonlin, users input the vector valued function: p;(x)=

pi1(x)

pa(x)

Pn(X)

Then, the problem is the restated as the following optimization problem:
minimize || p(x)||§ = minimize(pl(x)2 + pz(x)2 + ..+ p,,(x)z)
X P

The command x=1sgnonlin(fun, x0) starts at the intial guess point x0 and finds a
minimum of the sum of squares of the function described in fun. Note, ‘fun’ is the vector
valued function, p(x), and should return a vector of values, which MATLAB implicitly
squares and sums up. Users can also input upper and lower bounds for the parameter
space as well as other options. Refer to MATLAB’s 1sqnonlin documentation for more
details [23].

To solve the nonlinear least squares problem, 1sqnonlin uses a trust region
reflective algorithm [27]. This algorithm only solves systems that are not
underdetermined, that is there are at least as many data points as unknown parameters.
Many methods of the MATLAB Optimization Toolbox are based on trust regions. To
understand the trust region approach, let us consider minimizing f(x). Supposing we are
at a point x, in n-space and wish to iterate and improve our function value. The goal is to
approximate f with a simpler function g, which reasonably reflects the behavior of the

function f in neighborhood N around the point x. This neighborhood is the trust region.
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This is reasonable as for general, smooth nonlinear functions, local approximate models
fit the original function. A trial step s is computed by minimizing(approximately) over N.

This creates the trust region subproblem:
minimize [g(s),s € N]

The current point is updated to x + s if f(x + s) < f(x). Otherwise, the current point
remains unchanged and the trust region N shrinks. In this case, we see that our trust region
resulted in an inaccurate approximation. Thus, we shrink the region and the trial step
computation is repeated.

The key questions in the trust region reflective algorithm are how to choose and
compute the approximating function ¢ and how to choose and modify the trust region N.
In the trust region method, the quadratic approximation, g, is defined by the first two terms
of the Taylor approximation of f at x and the neighborhood N is usually either spherical

or ellipsoidal in shape. We see by Taylor expanding to two terms, we get:

s Hs

fx+5) = f(x)+s'g +-44

Where H is the Hessian matrix associated with f at x, and g is the gradient of f at x. Thus,

to find (x + s) such that f(x + s) < f(x), the trust region subproblem then becomes

o - sTHs
minimize [s° g+ >
N

]

such that ||Ds|[, < 6. Where D is a positive diagonal scaling matrix and J is a positive

scalar. This inequality constraint ensures that we minimize within our trust region.
Algorithms for solving the equation above exist; however, they may involve the

computation of a full eigensystem which requires time proportional to several

factorizations of H. Therefore, we use a separate approach to solving the trust region

problem outlined in MATLAB’s Unconstrained Nonlinear Optimization Algorithms [27].
To solve the trust region problem, we restrict the trust-region problem to a two

dimensional subspace S. The work now lies in computing the subregion. We define S as
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the linear space spanned by the vectors s1 and s,, where s; is in the direction of the
gradient and s, is either a solution to
H-s5=-g
or
sy H-5,<0
Thus, we now minimize the trust region subproblem along the plane spanned by s

and s,. The iteration performed is then:
1. Formulate the two dimensional trust region-subproblem
2. Solve the equation above to determine the trail step s
3. If f(x +5) < f(x), then x = x + 5. Else, shrink the trust region and reiterate.
4. Adjusto

These steps are repeated until we obtain one of the following stopping criteria:

MaxFunEvals: Maximum number of function evaluations allowed has been reached

MaxlIter: Maximum number of iterations allowed has been reached

TolFun: Lower bound for change in function value is reached

TolX: Lower bound for norm of change in x is reached

If 1sgnonlin stops by acheiving TolFun or TolX, the run is considered to have

converged. For more information on the trust region reflective algorithm refer to [27].

3.4 Global Optimization
3.4.1 Introduction.
Using a local optimization solver gives us a look at what the minimizing parameter

vector may be, however, the results may not be the most optimal fit to our data. It is
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possible that our 1sqnonlin solver obtains a solution that represents the minimum of our
objective function in only a local neighborhood. In order to arrive at the best parameter
estimation, we need to implement a global optimization solver. This will ensure that we
obtain the best fitting parameter estimate for our data.

3.4.2 Example(Rastrigin’s Function).

To illustrate this behavior, consider the plot of Rastrigin’s function in Figure 3.7

below [24]. The Rastrigin function is defined as:

Ras(x) = 20 + x7 + x5 — 10(cos(27x;) + cos(27x,))

50

20
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Figure 3.7: Rastrigin’s Function

We see that Rastrigin’s function contains many different local minima, represented
by the valleys in the plot. However, this function has only one global minimum located at
(0,0,0). At any of the other local minima, the function values are greater than 0. We also
note that the farther away the local minima is from the origin, the larger the function value
at the minima is.

Rastrigin’s functions represents a good example of how a local optimization solver

can fail to obtain correct results [24]. The existence of numerous different local minimas
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creates the possibility that our local optimization solver may give us a solution that is only
the minimum in a given neighborhood and not the entire feasible region. For these
reasons, we must implement a global optimization solver. For this thesis, we implement
three different global optimization solvers.

3.4.3 MultiStart.

The first global optimization solver we use is MATLAB’s MultiStart tool [20].
MultiStart takes a local solver, in our case the 1sgnonlin solver, and intializes it from
multiple different starting guesses. The aim of this global optimization solver is to sample
different basins of attraction. For a given local minimum, the basin of attraction is defined
to be the set of initial guesses that lead to the said minimum when optimizing using
1sgnonlin. MATLAB’s MultiStart performs the following steps: generate starting

points, run local solver, check stopping conditions and create GlobalOptimSolution object.

1. Generate Starting Points- With MATLAB’s MultiStart, users can define the bounds
for the starting points. From here, MATLAB randomly distributes a set of starting
points to use as initial guesses. MultiStart can be used in parallel by distributing the

starting points to different processors where the local solver is then executed.

2. Run Local Solver (1sgnonlin)- In this step, MATLAB runs 1sgnonlin at the
given starting point. When the local solver finishes running, MultiStart stores the
solutions and moves to the next step. After each iteration, MATLAB checks to see if

the stopping conditions have been met.
3. Check Stopping Conditons- two stopping criteria for MultiStart.

e MaxTime- The maximum time, defined by the user, allotted for MultiStart to

run

e All starting points used
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4. Create GlobalOptimSolution object- When the stopping conditions are met,
MultiStart creates the GlobalOptimSolution object which contains:
e The solutions obtained by running 1sgnonlin
e The function values at the solutions
e The points in the basin of attraction for each solution

More information on MultiStart can be found in MATLAB documentation
(18], [20], [22], [26].

3.4.4 GlobalSearch.

The next global optimization solver we implement is MATLAB’s GlobalSearch tool
[20]. GlobalSearch differs from MultiStart in that it is used to find a single global
minimum on a single processor where as MultiStart is used to find multiple local minima
and can run in parallel. GlobalSearch only runs fmincon, a local solver that finds the
minimum of a constrained function of several variables. Similar to 1sqgnonlin, fmincon

uses a trust region reflective algorithm to find the global minimum. The GlobalSearch

algorithm is summarized in the following steps:
1. Run local solver, fmincon, from initial starting point x0.
2. Generate a set of trial points.
3. Run local solver at the best starting point among a subset of trial points.

4. Loop through the remaining trial points, running fmincon if the point satisfies

constraint conditions as well as other specified conditions.
5. Create GlobalOptimSolutions vector.

A more detailed version of the GlobalSearch algorithm is listed below.
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1. Run fmincon from x0:
To use GlobalSearch, users must first input an objective function and a starting
point. GlobalSearch runs fmincon from the starting point. If this results in
convergence, the starting point and end point are used for an initial estimate on the
radius of a basin of attraction. GlobalSearch then records the function value for use
in a score function. In this case, the score function is the sum of the function value
at a certain point and a multiple of the sum of the constraint violations. Hence, a

feasible point has a score equal to its function value.

2. Generate Trial Points, Obtain Stage 1 Start Point, Run:
From here, GlobalSearch generates a set of trial points using a scatter search
algorithm. GlobalSearch then performs function evaluations at a subset of the trial
points, taking the point with the best score, called the Stage 1 Start Point, to run
fmincon on, the subset of trial points are then removed from the original set of trial

points.

3. Initialize Basins, Counters, Threshold:
The localSolverThreshold is initially the smaller of the two objective function
values of the solution to fmincon at x0 and the Stage 1 Start Point. The initial
estimate for the basins of attraction for the solution of these two points are spheres
centered at each point with the radius being the distance from the initial points to

the solution points. GlobalSearch keeps track of two counters.

e Number of consecutive trial points that lie within a basin of attraction. One for

each basin.

e Number of consecutive trial points that have a score function greater than

localSolverThreshold

4. Begin Main Loop:
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Global Search examines the remaining trial points, the Stage 2 Trial Points,
peforming the following steps. MaxTime is monitored, and stops the search if

MaxTime has elapsed.

5. Examine Stage 2 Trial Point to See if fmincon Runs:
GlobalSearch calls trial point p, and runs fmincon starting at p if the following
conditions hold:
e D is not in any existing basin
e the score of p is less than localSolverThreshold

e p satisfies bound and/or inequality constraints defined by user

6. When fmincon Runs:

e Reset counters for basins and threshold to zero

e Update the solution set. That is, if the fmincon run from p converges,

GlobalSearch updates the GlobalOptimSolution object

e Update basin radius and threshold. That is, if fmincon converges, we set
radius to the maximum of the distance between p and its solution and the

existing radius. We update the threshold to the score value of p

e Report to iterative display

7. When fmincon Does Not Run:

e Update counters. Increment the counter for every basin containing p. Reset the
counter of every other basin to zero. Also, increment the threshold counter if
the score of p is greater than or equal to localSolverThreshold. Otherwise reset

the counter to zero.
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e React to Large Counter Values. For each basin with counter equal to
MaxWaitCycle, we shrink the basin radius and reset the counter to zero. If the

threshold counter equals MaxWaitCycle, we increase the threshold.

8. Report to Iterative Display. Every 200th trial points is displayed.

9. GlobalSearch has the same stopping criteria as MultiStart:

e MaxTime- The maximum time, defined by the user, allotted for MultiStart to

run

e All starting points used

After reaching one of the stopping criteria, GlobalSearch creates the
GlobalOptimSolution object which reports the solution and function value at the solution.
More information of GlobalSearch can be found in [20]

3.4.5 Genetic Algorithm.

The final global optimization solver we use is MATLAB’s Genetic Algorithm [21].
In general, a genetic algorithm is a method for solving both constrained and unconstrained
optimization problems based on a selection process that mimics biological evolution. The
algorithm iteratively modifies a population of individual solutions. In our case this
population is a set of vectors whose entries are the nine or thirteen parameters used for our
IED model. At each iteration, a genetic algorithm randomly selects individuals in the
current population, using them as parents to produce children for the next generation.
Over generations, the population evolves into an optimal solution.

Specifically, MATLAB’s Genetic Algorithm performs the following steps:

1. Begin by creating a random initial population
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2. The algorithm then creates a sequence of new populations. At each of these steps,
the algorithm uses points in the current population to create the next population. To

create the new population, Genetic Algorithms does the following:
e Scores each point in the current population using their function value
e Scales the scores to easily arrange members by order

e Selects members, now called parents, based on their function value scores

e Chooses a number of parents with lower function scores and labels them as
elite. These individuals are passed to the next generation since they have the

lowest function values

e Produces children from parents. This can be done by making random changes,
called mutation or by combining the vector entries of a pair of parents, called

CrosSsover.

Replaces population with children to form the next generation

3. The algorithm stops when one of the stopping criteria is met. There are numerous
different options for stopping conditions for Genetic Algorithm.
e Maximum Number of Generations Reached
e Maximum Time

e Fitness Limit - The algorithm stops when it attains a point with fitness value

lower than or equal to Fitness Limit

e Stall Generations/Function Tolerance - The algorithm stops when the weighted
average change in fitness function value divided by Stall generations is less
than Function Tolerance. Stall generations is defined by the consecutive

number of generations in which the optimal function value has not decreased

48



e Stall Time Limit - The algorithm stops if there is no improvement during a

period of time equal to Stall Time Limit

At each vector coordinate, the Genetic Algorithm randomly selects one of the
parents’ corresponding coordinate value to pass on to the child for the crossover case. For
the mutation case, the algorithm creates mutation by randomly changing the coordinate
values of the parents. Elite parents are passed down without any change. More detailed
information on the Genetic Algorithm can be found in MATLAB documentation [19]

[21].
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IV. Results and Analysis

4.1 Solver Verification

To validate that our optimization methods work, we first use them on a test set of
data. Specifically, we fix a vector of our linear model parameters, o, and use equations
(3.8-3.11) to obtain data points. We then start our local and global optimization solvers
from a random point to see if we obtain the correct results. Doing this, we obtain the

following results with our linear model:

ki ks k3 ky ap | a | ay | B1 | B
400 | 20551373 1682|100 4| 4| 6| .8

Table 4.1: 0y. We use this parameter vector to generate the test data points used for solver

verification.

Solver Function Value at Minimum
Isqnonlin 3.27e-4

MultiStart 9.04e-11

GlobalSearch 8.49e-2

Genetic Algorithm | 7.32e-3

Table 4.2: Linear Verification Results. Running our four minimization solvers, we obtain

these function values.
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The optimization solvers for this case returns 0. Similarly, with our nonlinear model, we

obtain the following results:

Solver Function Value at Minimum
Isgnonlin 1.36e-2
MultiStart 1.33e-2
GlobalSearch 1.41e-2
Genetic Algorithm | 1.34e-2

Table 4.3: Nonlinear Verification Results. Running our four minimization solvers, we

obtain these function values.

The solution (MultiStart) in this case is:

CO) | EQ) | DO) | FO) | C | a |a|a | Bi|B]| N Y2 Y3

500 | 500 | 100 | 100 | 2.6e6 | 100 | 4 | 4 | .6 | .5 | 7.9e-10 | 7.7e-7 | 1.8e-6

Table 4.4: Nonlinear Verification Solution

Solving for &y, k>, k3, k4 from C(0), E(0), D(0), F(0) using equations (3.12-3.15), we also
see that the solvers return the parameter values in 0. Thus, we see that our solvers

converge to oy.

4.2 1ED Data from Iraq
We can now apply all the methods previously mentioned in order to analyze IED
supply chain behavior. An IED metrics report written by the Center for Strategic

International Studies [2] contained the data displayed in Table 4.5 regarding the number of

51



IEDs that were detonated and found in Iraq over a 26 month period from April 2008 to

May 2010. The information in Table 4.5 is also displayed in a plot in Figure 4.1. We use

the following information as data for our least squares problem from here on.

Time (months) | Detonated (d;) | Found (f;) || Time(months) | Detonated (d;) | Found (f;)
0 93 710 13 434 4634
1 144 1244 14 460 4783
2 191 1615 15 469 4870
3 227 1958 16 480 4992
4 252 2293 17 491 5108
5 274 2617 18 503 5218
6 296 2905 19 510 5306
7 325 3218 20 519 5375
8 346 3485 21 529 5464
9 368 3744 22 541 5532
10 386 3977 23 554 5616
11 393 4206 24 565 5689
12 413 4437 25 580 5749

Table 4.5: IEDs Detonated and Found in Iraq
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Figure 4.1: Plot of IEDs Detonated and Found

4.3 Linear Model Results
Formulating the least squares problem for our linear case, we obtain the following

objective function:

m@)= \SZ D = i)~ d) + (F(t = i.0) - f)]
“4.1)

where o=< ky, ko, k3, k4, @9, @1, @2, 81, B2 > 1S a vector consisting of our nine parameters

and where
—rit —rt
(07X 141041 azalkle 1 a’zkze
D(t) = ( ) - + k3
ryr ri(ry —r) r

+k4

F) = [,310/0 N (,320/0&1 )] . Bikie N Braikie™ 3 Bokye™™

ri rir r ri(ry —r) D)

Introducing the data listed in Table 4.5 for d; and f; fori = 0, 1,2, ..., 25 into equation

4.1, we have our complete objective function.
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4.3.1 Local Optimization Solutions.

To implement our local solver, we must first determine the parameter values to use as
an initial guess. Suppose we make the initial guess of the rate parameters and initial

values of each state listed in Table 4.6. Then, from equations (3.12-3.15), we obtain a

parameter vector, o, as our initial guess to run 1sqgnonlin.

Parameter

C(0)

E(0)

D(0) | F(0)

(o)) (03] (0%)

Bi | B

Guess Value

2450

1680

93 | 710

150

Using the local solver 1sgnonlin we obtain the following function value as our

minimum: m(0)=932.0660. Our initial guess parameters, bounds and solutions are listed

in the table below:

Table 4.6: Initial Guess Values for Linear Model

Parameter | Lower Bound | Upper Bound | Initial Guess | Solution

ki —00 00 2300 3019.7
ky —00 o0 9360 1902421.4
k3 -0 00 -467 257.0

ky —00 o0 -3420 2577.3
@ 0 00 150 152.3
a) 0 99 8 579

o) 0 99 1 .063

B 0 99 2 .063

B2 0 99 .65 578

Table 4.7: Parameter Values for Linear 1sqnonlin Solution
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Figure 4.2 gives us the fit to our data obtained from our solution. We aim to obtain

better solutions through our global optimization methods.

Detonations vs Time Found s Time
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Figure 4.2: Data Fits for Linear Model Using Local Solver. This data fit obtains a function

value of m(0)=932.0660. We aim to improve our results using global optimization tools.

4.3.2 Global Optimization Solutions.

4.3.2.1 MultiStart.

We now apply our global optimization methods in order to find a better solution.
Running the MultiStart global optimization solver, we were able to run 1sqnonlin from
4,505 different starting points for our least squares problem. With this optimization tool,
we obtain a minimum of m(c)=175.2102. The table below shows the bounds of our

random starting points as well as the parameter values of our solution.
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Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
ki —00 00 2300 3544.5
ky -0 00 9360 96499.8
k3 —00 00 -467 596.6
ky —00 00 -3420 6127.8
g 0 00 150 2.8e-11
a 0 .99 .8 110
o) 0 .99 1 013
B 0 .99 2 .034
B> 0 .99 .65 127

Table 4.8: Parameter Values for Linear MultiStart Solution

4.3.2.2 GlobalSearch.

Running GlobalSearch, we obtain a minimum of m(c)=177.1013.
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Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
ki —00 00 2300 4210.6
ky -0 00 9360 -2191.5
ks —00 00 -467 466.4
ky —00 00 -3420 4608.8
o 0 00 150 55.37
a 0 .99 .8 .084
o) 0 .99 1 .048
B 0 .99 2 074
B> 0 .99 .65 275

Table 4.9: Parameter Values for Linear GlobalSearch Solution

4.3.2.3 Genetic Algorithm.
Finally, running Genetic Algorithm, we obtain a minimum of m(0)=237.7092.

However, since GeneticAlgorithm is typically used to obtain a general idea of where the

minimum may exist, we run our local solver, 1sqnonlin, starting at the Genetic

Algorithm output to obtain a better solution. Thus, performing 1sqnonlin, we obtain a

minimum of m(c)=175.2597 with the following values:
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Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
ki —00 00 2300 3795.9
ky -0 00 9360 -39647.7
k3 —00 00 -467 598.1
ky —00 00 -3420 6129.0
Q) 0 00 150 3.84e-14
a 0 .99 8 .100
a 0 .99 1 015
B 0 .99 2 .037
B> 0 .99 .65 132

Table 4.10: Parameter Values for Linear Genetic Algorithm Solution

4.3.3 Final Results.

We see that the MultiStart optimization tool gives us the best fit parameters for our
data. MultiStart obtains a function minimum of m(c)=175.2102. The least squares
function value gives us the absolute error, the difference between our solution and the

exact data, however, if we wish to incorporate the magnitude of the exact solution, we

m(o)

T where p is the

should report the relative error. We define the relative error as E =
vector containing our 52 data points. That is, the relative error is the absolute error divided
by the magnitude of the exact solution. Thus, we have E = 0.008. The following plots

illustrate the progression of the four states through the 26 month period. Here, we see that

applying our least squares method, we can estimate how many IEDs were being

constructed and emplaced at a give time in the past.
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Detonations vs Time Found vs Time
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Figure 4.3: Data Fits for Linear Model Using Global Solver. This plot illustrates the best fit
we obtain for our linear model. We achieve a relative error of E = 0.008. Furthermore, we
see that the data points for IEDs detonated seem to oscillate around the obtained fit. This
could be explained by a some periodic, time dependent occurence which may be accounted

for in the nonlinear model.
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Constructed vs Time Emplaced vs Time
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Figure 4.4: Approximated Curves for Linear Model (MultiStart). To begin, we only had
access to data on IEDs found and detonated. After solving the least squares problem,
we now have an estimate for the numbers of IEDs being constructed and emplaced. In
this case, we gain valuable information on the behavior of the IED supply chain. We
observe that enemy forces are constructing fewer IEDs as time progresses. Furthermore,
at t = 2, we observe that emplaced IEDs achieved a maximum. This means that at r = 2,
coalition forces’ efforts in defeating the device began to overpower enemy forces’ efforts

at emplacing IEDs.

Without this estimation, coalition forces would have to use the number of IEDs
detonated and found as a metric to determine how well they are performing in attacking
the network and defeating the device. After solving our least squares problem, we have a
more direct metric for coalition forces to use. Since the number of IEDs in the
construction state is in a constant state of decrease, we can conclude that coalition forces
were adequately attacking the network for the duration of the 26 months. As for IEDs
emplaced, we can conclude that at time ¢ = 2, coalition forces were putting enough effort

into defeating the device to begin winning against enemy forces’ efforts at emplacing
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IEDs. Thus, we see that modeling the supply chain and solving our least squares

parameters offers a powerful tool at gauging coalition forces’ C-IED efforts.

4.4 Nonlinear Model Results
We can now apply all the methods previously mentioned in order to analyze IED
supply chain behavior for the nonlinear case. The least squares objective function for the
nonlinear case is the same as the one used for the linear case:
m@)= || LD = i.7) — ) + (F(t = ,7) - £)]
where in this case, o=< C(0), E(0), D(0), F(0), C*, ap, a1, @2, 1,82, Y1, Y2, V3 > is a

vector consisting of our thirteen parameters and where C(¢), E(t), D(t), and F(¢) are given
by the solutions obtained by running ODE45 on equations (3.16-3.20). We now perform
the parameter estimation methods on the nonlinear case.

4.4.1 Local Optimization Solutions.

We aim to use the nonlinear model to improve our results from the linear model. To
do, this we run 1sgnonlin from an initial guess set to the minimum from the linear
model. Recall from our linear model that the parameter values that gives us our best

obtained minimum were:

Parameter k ky k3 ky @ a | @ | B | B

Value 3544.5 | 96499.8 | 596.6 | 6127.8 | 2.8e-11 | .110 | .013 | .034 | .127

Table 4.11: Linear Solution

Since we noted that our nonlinear model contains our linear model, we can take the
optimized parameter values from the linear model and use them as the initial guess point
for 1sgnonlin. From equations (3.12-3.15), we see that we had the following initial

values for C(0), E(0), D(0), F(0).
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C(0)

E(0)

D(0)

F(0)

3544.5

2293.6

115.0

771.3

Table 4.12: Initial Function Values for Nonlinear Model

Hence, converting our optimized parameter values from the linear case into

parameters for the nonlinear case we have the initial guess displayed in Table 4.13. We

assign a large value to C*.

C0)

E(0)

D(0)

F(0)

C*

(o))

an

B

B2

Y1

Y2

Y3

3544.5

2293.6

115.0

771.3

500000

2.8e-11

110

013

034

127

Table 4.13: Initial Guess for Nonlinear Model

Using this initial guess, 1sqnonlin stops after 7 iterations due to the fact that the norm of

the step size is less than TolX=1e-8. Our function value remains unchanged,

m(o)=175.2102. In this case, the nonlinearity imposed by vy, v», ¥3, did not result in

improvement of our function value. We now investigate the nonlinear model using global

optimization methods.

4.4.2 Global Optimization Solutions.

4.4.2.1 MultiStart.

Running MultiStart, we obtain a minimum of m(c)=174.8342 with the following

values:
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Running GlobalSearch, we obtain a minimum of m(c)=175.2096 with the following

values:

Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
C(0) 0 10000 3544.5 4823.7
E(0) 0 10000 2293.6 1159.3
D(0) 0 300 115.0 129.5
F(0) 0 1000 771.3 774.7

Cr 1 5000000 500000 18365
Qo 0 1000 2.8e-11 .002

) 0 .99 110 3.265e-10
) 0 .99 013 .020

B 0 .99 034 054
B2 0 .99 127 131

Vi 0 1 0 2.357e-10
0% 0 1 0 4.399¢-10
Y3 0 1 0 3.482e-4

Table 4.14: Parameter Values for Nonlinear MultiStart Solution

4.4.2.2 GlobalSearch.
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Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
C(0) 0 10000 3544.5 3591.0
E(0) 0 10000 2293.6 2246.8
D(0) 0 300 115.0 115.1
F(0) 0 1000 771.3 771.3

Cr 1 5000000 500000 499637
Qo 0 1000 2.8e-11 0

) 0 .99 110 .108
o) 0 .99 013 014
B 0 .99 .034 034
B2 0 .99 127 128
Y1 0 1 0 0

Y2 0 1 0 0

Y3 0 1 0 0

Table 4.15: Parameter Values for Nonlinear GlobalSearch Solution

4.4.2.3 Genetic Algorithm.
Running Genetic Algorithm and running 1sqnonlin, we obtain m(c)=175.2096

with the following values:
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Parameter | Lower Bound | Upper Bound | Initial Guess | Solution
C(0) 0 10000 3544.5 3591.8
E(0) 0 10000 2293.6 2246.1
D(0) 0 300 115.0 115.1
F(0) 0 1000 771.3 771.3

C* 1 5000000 500000 500000
Qo 0 1000 2.8e-11 3.92e-14
) 0 99 110 .108
@ 0 99 013 014
B 0 .99 .034 034
B> 0 99 127 128
Vi 0 1 0 2.92e-14
0% 0 A 0 2.95e-14
Y3 0 1 0 8.65¢e-10

Table 4.16: Parameter Values for Nonlinear Genetic Algorithm Solution

4.4.3 Final Results.
We see that MultiStart once again gives us the best fit. MultiStart obtains a function
minimum of m(c)=174.8342. In terms of relative error, E=0.0079. The following plots

illustrate the four states through the 26 month period.
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Detonations vs Time Found vs Time
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Figure 4.5: Data Fits for Nonlinear Model. This plot illustrates the best fit we obtain
for our nonlinear model. We achieve a relative error of £ = 0.0079. We again see
the same oscillatory behavior for the IEDs detonated fit, thus, we can conclude that this
behavior is independent the strategy changes we allow for in our model. This behavior must
be explained by another source of time dependent oscillatory behavior, such as seasonal

weather effects.
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Figure 4.6: Approximated Curves for Nonlinear Model. With the new nonlinear model
estimates, the approximated curves demonstrate the same behavior, however, we now have

different vales for C(0) and E(0). We also see that the maximum for E(f) occurs at t ~ 5.

4.5 Analysis

We used the nonlinear model to see if we can improve the minimum of our function
from the linear model. By applying both local and global optimization methods, we saw
that the improvements were marginal. We observed that although the nonlinear model did
not significantly improve our function value from the least squares problem, the

approximations for C(¢) and E(¢) that resulted were drastically different as pictured below.
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Figure 4.7: Estimate Comparison. Here we compare the two estimates for C and E that
we obtain. The initial values, C(0) and E(0), changed drastically. The maximum of E(7)
also occured later in time for the nonlinear model, however, the general behavior of the two
states were still similar. Both models gave us approximations where C(#) was decreasing,
while E(¢) achieved some maximum and then began decreasing, presumably when coalition

forces” C-IED operations began to outweigh enemy forces’ actions.

In this case, the two solutions present two unique minima for the objective function.
As a result, these two minima provide different approximations for C(¢) and E(¢). Thus,
although we obtained close fits to the observed data, the estimates for the unobserved
behavior changed drastically. From this point, we must choose which solution to use for
approximating the IED supply chain.

Looking at the best solution (MultiStart) from the nonlinear case, we see that the
terms that impose the nonlinearity, y;, were close to zero, with the exception of
v3 = 3.482e — 4. Moreover, we see that the critical capacity term we introduce, C* does
not impose nonlinearity; it is a linear term. Since the vy, terms are close to zero, we may be
inclined to conclude that the linear model may be sufficient in modeling the data we used.

To investigate this, we now perform the least squares problem with the same data on the
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linear model with the same critical capacity term. This gives us the following linear

system:

C = (1 —E)ao—(al +B)C
C*

E = a1C - (Q’z +182)E

D = a'zE

F =BC+BE

Solving the least squares problem, we obtain m(c)=175.2096. Recall that the best
solution from the linear case was m(o)=175.2102 and the best solution to the nonlinear
case was m(0)=174.8342. Thus, since we applied a least squares problem to the linear
case including a capacity turn and still did not achieve as low of a minimum as the
nonlinear case, we see that the nonlinearity imposed by ;3 in our nonlinear solution was
the cause for the more optimal minimum. Since the nonlinear terms did in fact provide
better results and since the nonlinear model includes the linear model, we see that the
nonlinear case here, does ultimately provide a better estimate.

We do note, however, that the linear model is more efficient in two ways. First, the
linear model requires minimization over nine dimensions, while the nonlinear model
requires minimization over thirteen dimensions. This causes our optimization methods to
take more time. Second, in the nonlinear case we must run our numerical differential
equations solver to obtain function values with given parameters at a given time. Since we
have explicit solutions from equations (3.8-3.11) for the linear model, MATLAB only
requires function evaluations to obtain function values. Thus, if efficiency were valued, we
should use the linear model, with a critical capacity term.

We saw that we created a second, more complicated model, the nonlinear model to

obtain better solutions to our data fits. The nonlinear model obtained marginally better fits
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for the observed data, but drastically different estimates for the unobservables. We saw the
nonlinearity terms caused the change in the estimates. We choose to use the nonlinear
estimates due to the fact that it did provide better data fits and due to the fact that it
contains the linear model (thus allowing for further improvement of our function value).
We also recognize though, that if our data does not behave similarly to the set used in this
chapter, that is, if the number of IEDs detonated and found each time period are
fluctuating, the nonlinear model may provide significantly more optimal solutions than the
linear model as this would model enemy and coalition forces changing strategies.

One advantage of the nonlinear model is that it allows us to vary the rates over time.
Hence, after solving the least squares problem for our nonlinear model, we can see how
the rates in which IEDs flow from one state to other vary over time. We obtain the

following rate functions using the parameter values that gave us the best function value:
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Figure 4.8: Rates over Time. Here, we observe the behavior of our flow rates over time. We
see that the parameters remain nearly constant except for @;. This is expected as y; and y,
were small compared to y3, which @; was influenced by. The initial increase in &, accounts
for the difference between the linear and nonlinear model in the approximations for E().
The initial increase in &; causes the maximum for E(f) to occur later in time. Here, we see
that the fluctuation in &, is what allows us to obtain a better fit as the other rates remain

constant.
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V. Conclusions

5.1 Summary

To help combat IEDs, this thesis analyzed the IED supply chain process to provide
new perspective on fighting IEDs. To accomplish this, we began by first developing a
model of the supply chain terrorists use to develop, emplace and detonate IEDs. Our
model contained four different states in which IEDs can exist in and five rate parameters
which represented the flow of IEDs into and out of these states. For the flow rates, we
considered two cases. The first case assumed that the flow rates were constant while the
second case formulated flow rates which changed to represent basic strategies for both
enemy and coalition forces.

In the case of constant flow rates we can obtain solutions explicitly. In the second
case, we do not solve explicitly. Instead, we employed the use of a numerical differential
equations solver. Along the way, we proved that solutions to our system of differential
equations are unique. Furthermore, we created a way to show that MATLAB’s ODEA45 is
convergent. To do this, we implemented our own RK4 scheme, observed convergence and
then showed that our RK4 results converged to the ODE45 solutions.

From here, we applied a least squares method. Over a given period of time, coalition
forces collect data on the number of IEDs that detonate as well as the number of IEDs
they find. Using this data, we formulated a least squares problem. In the case of constant
flow rates, we have a nine dimensional minimization problem while in the nonlinear case
we have a thirteen dimensional minimization problem.

To solve our least squares problem, we then employed the use of optimization tools.
We applied both local solvers (1sgqnonlin) and global solvers (MultiStart GlobalSearch
Genetic Algorithm). This then gave us optimal parameter sets for both cases. We observed

that our nonlinear case contained our linear case, hence we applied the nonlinear case to
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improve our results from the linear case. Consequently, we observed that the
improvements were marginal but the resulting estimates were quite different. We chose to
use the nonlinear estimates as the nonlinear terms ultimately provided a better fit for the
data. We do note that if the rate at which D(¢) and F(¢) increases fluctuates, the nonlinear
model may provide substantial improvements as it allows for our rates to fluctuate.

Once the solution is obtained, we gain access to valuable information of the IED
supply chain. To begin, coalition forces could only observe the number of IEDs detonated
and found. After solving our least squares problem, not only do we know how many IEDs
were detonated or found but we also can estimate the number of IEDs constructed and
emplaced, as well as how fast they are being transported throughout the supply chain, this
gives us an estimate on the behavior of the entire supply chain. In the data used from Iraq
over a 26 month period, we estimated that IED construction was in decline the whole
time. We also saw that our estimation showed an increase in emplaced IEDs followed by a
decrease for the remainder of the time period. This allowed us to see when coalition
efforts at defeating the device finally became adequate enough in order to begin winning

the war against IEDs.

5.2 Future Work

In our model we did not consider a storage state for IEDs nor did we consider the fact
that coalition forces can find IEDs in storage. Instead we chose to combine storage with
the construction state so that our found flow rates would adhere to JEIDDO’s areas of
focus. For future work, one can model the IED supply chain to accommodate for storage.
One model for this supply chain is depicted in Figure 5.1. Furthermore, the research in
this thesis only focused on IEDs as a whole and only used data from Iraq over a 26 month
period. Future work can focus on creating different supply chains for different types of
IEDs. Researchers can also decide to perform the same analysis of IED supply chains and

focus on different countries, regions or battlefields.
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Figure 5.1: IED Supply Chain with Storage

By solving the least squares problem, we were able to look back and study the
progression of the construction, emplaced, detonated and found states. In the future, one
could use this information to look back and judge the impact of specific coalition C-IED
operations. By doing this, we can compare different C-IED operations and determine
which operations helped lower the number of IEDs emplaced and in construction and
which operations did not. This could provide valuable information on which C-IED
operations to fund in the future in the face budget constraints.

In this thesis, we only analyzed one data set. In the future, one could analyze more
data sets better modeled with the nonlinear case. One example could be a data set where
D(t) or F(t) fluctuate. We see that this could account for changing coalition and enemy
strategies. Furthemore, one could incorporate a system of delayed differential equations
into our model to account for the time needed for a change in strategy to take effect.

In the fits for IEDs detonated, we saw that the data points oscillated around our fits.

To extend the IED model, one could incorporate oscillatory behavior into the model. The
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introduction of a oscillating, time dependent behavior, such as seasonal weather effects,
can lead us to even better fits and approximations for IED supply chain behavior.

Lastly, one could use the methods provided in this thesis and apply them to combat
other threats. For example, drug trafficking supply chains. IED and drug trafficking supply
chains have much in common. Traffickers move along drugs throughout the supply chain
in a similar manner to enemy forces with IEDs. Furthermore, law enforcement agencies
look to intercept drugs in a similar manner to coalition forces with IEDs. The use of
parameter estimation methods in this thesis can help law enforcement agencies battle drug

trafficking threats.
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